

GNSS Integrity

Lantmäteriet, SWEPOS Stockholm, ÅF, 21 March 2019

Samieh Alissa samieh.alissa@lm.se

Outlines

- What is the integrity?
- Integrity Parameters.
- Integrity requirements.
- Integrity Algorithms/applications.

What is the GNSS integrity?

SWEPOS

What do you think about the knife thrower?

What is the GNSS integrity?

How to build the trust 'Integrity wall' while using GNSS ???

What is the GNSS integrity?

- "Integrity: the ability of a navigation system to provide timely warnings to users when the system should not be used". Source-Federal Radionavigation Plan
- **GNSS performance** means mainly the four GNSS quality attributes: Accuracy, Integrity, Continuity and Availability

Integrity vs. Accuracy

LANTMÄTERIET

GNSS Integrity parameters

- Alert Limit (AL): The largest position error allowable for safe operation. (It is the radius of a circle which describes the region that is required to contain the indicated position with the required probability for a particular navigation mode).
- Time to Alert (TTA)
- **Protection Level (PL)**: It is the key to the integrity concept. ??
- PL concept was devised to inform users of the degree of residual risk of large position errors after *integrity monitoring* is completed.
 - If PL > AL, the alert triggers;
 - If PL < AL, the alert does not trigger

Protection Level Concept

-User compute the Protection Level.

-The PL may vary between epochs according to the <u>type</u>, <u>quality</u>, <u>geometry</u> and <u>number</u> of **observations**, as well as the functional model used.

-To accept the solution at a certain epoch, the computed values of PLs should not exceed a threshold alert limit.

Integrity Statistical Decision Outcomes

Integrity Operational Modes

System Unavailable

Misleading Operations

Position Error (PE)

Practical example of using the Stanford Integrity Diagram

EGNOS Service Performance Monitoring Support (SPMS) project

DOY 280 (2018-09-07), PRN 136

EGNOS Signal Status

Practical example of using the Stanford Integrity Diagram

EGNOS Service Performance Monitoring Support (SPMS) project

DOY 280 (2018-09-07), PRN 123

LANTMÄTERIET

Example: Multipath error.

Integrity monitoring layers

Examples for Integrity requirements

Intern					System Level Parameters					
Typical operation	Horizontal alert limit	Vertical alert limit	Integrity risk	Time-to-alert			Alert Limit	Time to	Integrity Risk	
NPA	556 m	N/A	$1 - 1 \times 10^{-7}/h$	10 s		Ocean	25	10	10 ⁻⁵	
APV-I	40 m	50 m	$1 - 2 \times 10^{-7}$ in any approach	10 s		Coastal	25	10	10 ⁻⁵	
APV- II	40.0 m	20.0 m	$1-2 \times 10^{-7}$ in any approach	6 s	Por	rt approach and stricted waters	25	10	10 ⁻⁵	
Category I	40.0 m	35.0 m to 10.0 m	$1 - 2 \times 10^{-7}$	6 5	-				2	
Use	Case	Precis	sion	Integri	ty		M	ethod	l	
Navigation		I'm on the road		10-5		GNSS + DR +Ma		+Map	matching	
Traffic Efficiency (V2X)		I'm in the lane		10-7		GNSS (Correction Service) + D + Camera?			DR	
Autonomous Drive		I'm in this position in this lane		Impeccab	le	All these, more sensors?				
	Mapping (AAM)		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		F		_			
E	Bridge and Tectonic					Public safety	0.2 -	30 m	2 – 15 s	
M	onitoring for Bridge Safety	0.004 m	30 s			Collision avoidance	xe 0.2	! m	5 s	
т	elecommunications	680 nsec	30 s			Connected Vehicl Initiative	e 0.	2	5 s	

International Civil Aviation Organization (ICAO)

The International Maritime Organization (IMO)

Integrity systems (Algorithms)

RAIM vs ARAIM

	RAIM	ARAIM				
Constellation	GPS only	Multi-constellatio GNSS				
Frequencies	L1 only	ARAIM utilizes dual frequency signals (L1,E1)/L5,E5)				
Usage	Aviation applications	It is under developing to cover the AD (complex environments. Multipath, erroneous clocks (in the case of terrestrial signals of opportunity), spoofing,)				
Error model	Gaussian with zero mean	Other biases are considered				
Failure rate	In range of 10 ⁻⁴ per hour per satellite	In range of 10 ⁻⁵ per hour per satellite				

ARAIM Parameters

SBAS (EGNOS, WAAS,) integrity concept

Based on the information received from the GGF and also based in own data, the aircraft computes HPL and VPL for each epoch (every 0.5 second)

The **Quality Monitoring** function includes four parts:

- Receiver Operation Monitoring (ROM)
- Signal Quality Monitoring (SQM)
- Data Quality Monitoring (DQM)
- Measurement Quality Monitoring(MQM)
 - Consistency Check.
 - -Communication Monitoring

LANTMÄTERIET

Galileo integrity

Galileo will provide the SOL service through providing 3 elements:

• **Signal-in-Space Accuracy (SISA):** Expectation of the errors relative to the SV's clock and ephemerides.

• **Integrity Flags (IF):** Warning relative to a satellite that is transmitting a signal with an excessive error. IF is founded on the short term observation of the <u>clock's variations</u>, the <u>ephemeris</u> and the <u>RF signals</u>.

• **Signal-in-Space Monitoring Accuracy (SISMA):** Describes the SISE determination quality based on the Galileo Sensor Stations (GSS) observations. SISMA will be broadcast in a shorter time interval of 30 seconds.

Integrity monitoring (IM) on Land - Vehicle

It is possible to adopt the classic integrity mechanisms, for road application??? And How???

Integrity monitoring (IM) on Land - Vehicle

Unfortunately, the same methods (SBAS/GBAS, RAIM, ARAIM,) do not directly apply to HAVs (Highly Automated Vehicle), because some differences in the **requirements** and **environments**:

The Requirements

Higher precision/smaller (cm) PLs are required. As such level of accuracy is considered unattainable with Aviation, ITS applications are foreseen to be relying on SBAS, RTK or PPP techniques. These methods bring with them a new set of specific vulnerabilities. As example, in case carrier observations are to be used, cycle-slip monitoring shall be included, as well as IM for AR

The environment

Integrity monitoring (IM) on Land - Vehicle

Proposals:

PL will be calculated in real-time and will be provided to the vehicle guidance controller at a 1 Hz rate or faster (with different required hazard rates)

Local GNSS Integrity Principle

- Centralized processing of GNSS measurements:
 - Collection of measurements taken by many cars in a certain area at certain times
 - Digital map (data base) with local information on GNSS signal quality

- Cars used as sensors for signal quality assessment using mass-market receivers
- GNSS observations taken on board of the cars are shared by means of communications
- Collaborative monitoring of GNSS signals in urban scenarios
 - Spatial/temporal characterization of <u>local</u> signal degradations

Computation of <u>"Local Protection Levels" ellipses</u>

Enhanced navigation, robustness, safety for autonomous

vehicles <u>Globalstar</u> is developing a connected car program for continuous, worldwide service to vehicles. This combines PPP corrections provided globally (via LEO satellites) with local-area corrections (via LTE) in urban areas for connectivity anytime, anywhere. Both signals are broadcast at 2.4 GHz and include:

- Pilot channels used for ranging,
- Augmenting GNSS ranging,
- Providing robustness against jamming an Spooting Multiple GNSS Systems Included GPS civil signals on L1, L2C, and L5 GLONASS G1 and G2 (higher failure rate) Galileo E1 and E5 (when operational) Beidou (for Asian markets) Globalstars-band pilot signals** Global PPP/ Local CDGNSS WADGNSS (Optional) Multiple global Reference Multiple local Reference Stations Local Users Stations at known points surrounding an urban area **Observe Errors and Observe Errors and** calculate Global Corrections calculate Local Corrections Removes Iono. Global and Error Bounds and Error Bounds Correction Delay (dual-freq.) SV Ephemeris Scalar (combined) corrections Applies Tropo. Ionosphere and Troposphere included SV Clock Local model Corrections Computes Corrected Global PPP / WADGNSS Global + Local CDGNSS Position 95% Horizontal Accuracy ≤ 0.4 m 95% Horizontal Accuracy ≤ 0.1 m Performs ARAIM · Accuracy does not vary greatly from Local communications link needed integrity test region to region Local corrections are usually superior **Computes Protection** Needs dual-frequencyreceivers to to dual-frequency ionospheric removal Levels remove ionospheric delay Faster Initialization/Convergence · Lengthy initialization and convergence Accuracy degrades near edges of local (~1 minute) reference receiver network ≤ 0.2 m under clear sky conditions. ≤ 0.05 m under clear sky conditions

Source: Globalstar

MÄTERIE

Questions?

